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General aim

We will discuss some recent (and not so recent) results concerning the abstract

notion of Gaussian states on quantum groups, as introduced and studied by
Michael Schiirmann in 1980s.

(mainly based on joint work with Uwe Franz and Amaury Freslon)
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Noncommutative dictionary, quantum probability and
quantum states

The idea that quantum spaces should be described in terms of operator algebras,
viewed as algebras of functions on quantum spaces, clearly inspired by discoveries
of Gelfand, Naimark, Murray, von Neumann and others dating back to 1940s,
gained prominence in early 1980s.

unital C*-algebra A <+— noncommutative compact space X

stateon A +— noncommutative probability measure on X

Already this basic setup (possibly letting A be a general unital *-algebra) leads to
many quantum probabilistic ideas, especially around the notion of independence.
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Noncommutative Gaussian states?

Gaussian measures (on R, or more generally on a locally compact group) form
undoubtedly the most important class of probability measures, appearing in a
variety of contexts. They have numerous characterisations and properties; in
particular they are infinitely divisible, that is they have convolution roots of
arbitrary degree, and even embeddable, that is form elements of convolution
semigroups of measures.

To consider convolution of quantum measures (i.e. states on a unital *-algebra),
we need some more structure.
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Bialgebras and convolution

Definition

A *-bialgebra A is a unital *-algebra equipped with a coproduct, i.e. a unital

*~homomorphism A : A — A ® A which is coassociative:
(A®id)o A= (id®A)o A,

and a counit, i.e. a unital *-homomorphism e : A — C such that

(e®id)o A= (id®e)o A =id.

A key toy example: Pol(G), where G is a compact group: the algebra of all
matrix coefficients of finite-dimensional representations of G with

A(f)(g,h)=f(g-h), feF(G),g,heG

— identify elements of Pol(G) @ Pol(G) with functions on G X G.

Given a bialgebra A and two states w, u € S(A) we define their convolution:

wxp = (wpu)oA.
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Compact quantum groups

We will primarily work with a special class of *-bialgebras; these associated with
compact quantum groups.

Definition
We call a Hopf*-algebra A a CQG-algebra, and denote it Pol(G), thinking of G as

a compact quantum group, if A is spanned by coefficients of its finite-dimensional
unitary corepresentations.

Examples:

@ Pol(G) for a classical compact group G;

@ CJI for a classical discrete group T;

@ g-deformations of Pol(G), such as Pol(S5Ug4(2));
@ liberations of Pol(G), such as Pol(Uy).
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Convolution semigroups of states and their generators

A family (1+)e>0, of states (positive, unital functionals) on A = Pol(G) is called

a convolution semigroup of states if
Q fers = perps, t,s>0;
0+
Q 1e(a) = po(a) :=e(a), acA

Such convolution semigroups admit ‘pointwise derivatives at 0':

y(a) = lim pe(a) — e(a)

t—0+ t

, a€A.

(note their existence follows from the fundamental theorem of coalgebra)
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Quantum Lévy processes

Such convolution semigroups of states are naturally viewed as ‘families of
distributions of quantum Lévy processes’. This point of view allowed Schiirmann
to prove his reconstruction theorem.

Theorem (Quantum Schonberg's correspondence)

If (14¢)e>0 is a convolution semigroup of states on a *-bialgebra A, and

~v(a) = lim —ut(a) i)

t—0+ t

, a€A,

then v : A — C is Hermitian (y(a*) = v(a)), vanishes at 1 and is conditionally
positive: if e(a) = 0 then y(a*a) > 0. Conversely, each such functional on a
*-bialgebra is indeed a generating functional of a convolution semigroup of states:

oo

ue(a) = exp,(ty)(a) == Z (W)n&’ t>0,acA
n=0 :
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Schirmann’s classification of quantum Lévy
processes/generators

A convolution semigroup of states determines the associated quantum Lévy
process, and conversely, is determined by its generating functional. This leads to
the idea of classifying Lévy processes via their generators, formally applying also
to generating functionals on a unital *-algebra with a character.

Definition

A generating functional 7 : Pol(G) — C is called Gaussian if for any
a, b, c € Ker(e) we have y(abc) = 0; in other words,

YKz =0,
where
Ky :=Lin{by - - - b, : b; € Ker(e)}.
v
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Gaussian states

Definition
A generating functional 7 : Pol(G) — C is called Gaussian if for any
a, b, c € Ker(€) we have y(abc) = 0; in other words,

'7|K3 =0.

This is motivated by thinking of quadratic/second order generators (classically we
just look at generating functionals which vanish on polynomial functions whose
second derivative at the origin is 0).

Definition
A state w € S(Pol(G)) is called Gaussian, if w = py for some convolution
semigroup (fi¢):>0 of states on Pol(G) with a Gaussian generating functional.

Gaussian states have many interesting properties: for example they factor through
the commutation ideal if and only if they are tracial.
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Gaussian states for SUy(2)

Theorem (Skeide)

Let g € (—1,0) U (0,1). Then Gaussian generating functionals on Pol(SU4(2))
can be fully described and in fact all ‘live’ on Pol(T) (so come from classical
Gaussian processes on T).

Definition
Given two compact quantum groups H, G we say that H is a (closed) quantum
subgroup of G if there is a surjective Hopf*-morphism g : Pol(G) — Pol(H).

Example: T is a quantum subgroup of SU,(2), and every Gaussian generating
functional, v : Pol(SU4(2)) — C factors via T: there is a (Gaussian) generating
functional 4 : Pol(T) — C such that

y=%°q.

In general quantum subgroups can be identified with Hopf ideals of Pol(G).
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Notion of a Gaussian part

Definition

Let G be a compact quantum group. We call H the Gaussian part of G if H is
the smallest quantum subgroup of G through which all Gaussian generating
functionals (equivalently, all Gaussian states) of Pol(G) factor.

We write H = Gauss(G) and say that G is Gaussian if G is its own Gaussian part
(G = Gauss(G)).

v

So the Gaussian part of G is morally the subgroup of G generated by the support
of all the Gaussian states of G.

The notion has all the expected functorial properties; for example if H C G, then
Gauss(H) C Gauss(G), etc...

Adam Skalski (IMPAN, Warsaw) Gaussian states QGV 12 /23



Classical case and connectedness, take |

Theorem

If G is a classical compact group, then Gauss(G) coincides with the connected
component of G.

This is very easy to show for G being a Lie group, and in general requires some
topological considerations.

As expected, Gaussianity is in general related to connectedness.

Proposition

If G is a finite quantum group, then Gauss(G) = {e}. J

One way of showing this is by proving that if a Gaussian generating functional is
bounded, then it must be trivial.
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Kac property

Definition
We say that a compact quantum group is Kac (or of Kac type) if the antipode
S : Pol(G) — Pol(G) is involutive (equivalently the Haar state of G is tracial).

Every compact quantum group G admits the largest Kac quantum subgroup,
denoted Kac(G) (as noted by Sottan, Tomatsu, Vaes).

Theorem
For any compact quantum group G we have

Gauss(G) C Kac(G)

(i.e. Gaussian states live on Kac quantum subgroups).

The proof uses a simple, but useful observation: Zk, is the ideal generated by
the range of S2 — | (or by the range of 7, — I, where t # 0 and T is the scaling
automorphism).
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Kac property and Gaussian parts

Note that already the last two results imply that Gauss(SUq(2)) = T. And
combining other known results we get the following statement.

Proposition

Let G be a compact semisimple simply connected Lie group of rank k, let
g € (0,1), and let G4 denote the Korogodsky-Soibelman deformation. Then

Gauss(G4) = Tk
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Dual case

Let I' be a discrete group, and write Pol(") = C[I]. The finiteness/connectedness
remarks imply that I cannot be Gaussian, if I has torsion.

Theorem

Let I be a discrete group. Then [ is Gaussian if and only if it is torsion free
nilpotent of class 2 (i.e. it is torsion free and all the commutators are central).

Thus for example the dual of the discrete Heisenberg group Hs is Gaussian.
Theorem

Let T be a discrete group. Then Gauss() = I'/+/73(T), where the discrete group
on the right hand side is a maximal torsion free nilpotent of class 2 quotient of '
(and the normal subgroup /v3(I') can be described explicitly).

We have two different proofs of the last theorem; we can either use the results of
Passi on group rings or work directly with iterated commutators. The original
discovery came from quantum stochastic ideas, the Heisenberg group and Weyl
operators.
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Further examples

@ Gauss(O;) = T; Gauss(Oy;) is not classical for N > 4 (it contains both H;
and SO(N))

@ Gauss(Oyf) = SOn
e Gauss(Uj) D (Us, Hs)

Above we use the notion of the quantum subgroup generated by two other
quantum subgroups — this can be defined in terms of intersecting the relevant
Hopf ideals.
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Back to connectedness

Recall the ideals of Pol(G):

Ky :=Lin{by - - - b, : b; € Ker(e)},

@:ﬂm.

neN

Definition
We say that G is strongly connected if K., = {0}; it is totally strongly
disconnected if Koo = Kj.

A non-trivial fact is that K is always a coideal; in other words, there is a
quantum subgroup H of G (‘a strongly connected component of G') such that
Pol(H) = Pol(G) /K-
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Strongly connected quantum groups

Definition
We say that G is strongly connected if Ky, = {0}; it is totally strongly
disconnected if Koo = Kj.

o if G is Gaussian, then it must be strongly connected (but the converse does
not hold);

@ if [is discrete, then [ is strongly connected if and only if it is residually
torsion free nilpotent;

° U,Jg is strongly connected
@ if Pol(G) is generated by projections, then G is totally strongly disconnected

@ so non-trivial finite quantum groups and quantum permutation groups S,Jg
are not Gaussian
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Strongly connectedness vs connectedness

Definition (Wang, Cirio+D'Andrea+Pinzari+Rossi)

We say that G is connected if it does not admit any finite quotients (i.e. Pol(G)
admits no finite-dimensional Hopf *-subalgebras)

@ strong connectedness implies connectedness;
@ both notions coincide for classical compact groups;

@ but in general the converse implication does not hold.

One can naturally define and study strongly connected/connected components of
identity for compact quantum groups.
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What else do we know about Gaussian states?

@ they satisfy a Wick type formula

@ informally speaking the corresponding quantum Lévy processes involve the
quantum Brownian motions (processes generated by combinations of
annihilation and creation operators)

@ if a generating functional on Pol(G) factors via a quantum subgroup H, so
does the associated convolution semigroup of states (and its limit at infinity,
if it exists)
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Questions/perspectives

@ Is there any concrete Hopf-algebraic description of the Gaussian part of a
given compact quantum group? Can one introduce abstractly ‘iterated
commutators’ which would do the job?

e is U, (equivalently, U;y) Gaussian? Is Oy strongly connected (say for
N > 4)?

@ One can ask similar questions for locally compact quantum groups 3 la
Kustermans-Vaes. This raises the following (analytic) point: does the
Gaussian property for a generating functional v depend on choosing a dense
*_subalgebra in the domain of ?

@ can one characterise/describe properties of Gaussian states in the sense
proposed here beyond the properties of the associated generating
functionals?

@ very little is known about infinite divisibility for states on quantum groups!

Adam Skalski (IMPAN, Warsaw) Gaussian states QGV 22 /23



References

Convolution semigroups on *-bialgebras and Gaussian states:

L. Accardi, M. Schiirmann and W.von Waldenfels, Quantum independent increment
processes on superalgebras, Math. Z., 1988

M. Schiirmann, White noise on bialgebras, Lecture Notes in Mathematics, 1993.

Infinite divisibility
H.Zhang, Infinitely divisible states on finite quantum groups, Math. Z. 2020.

Generating functionals for locally compact quantum groups

A.S. and A. Viselter, Generating functionals for locally compact quantum groups, IMRN,

2021

This talk:

U.Franz, A.Freslon and AS, The Gaussian part of a compact quantum group, work in

progress.

Adam Skalski (IMPAN, Warsaw) Gaussian states QGV

23 /23



	Convolution semigroups of states and their generators
	Gaussian states and Gaussian parts

